
ASP.NET Core MVC - Roadmap 

1. Getting Started with MVC Projects 

• Directory Structure: Detailed explanation of the MVC directory 

(Controllers, Views, Models, wwwroot) and the role of Program.cs in 

configuration. 

• Routing and Controllers: Custom routing, attribute routing, and 

handling various HTTP requests. 

• Actions in Controllers: Exploring different return types and handling 

different HTTP requests. 

 

2. Controllers and Routing 

• Routing Basics: Attribute-based routing and custom route 

parameters. 

• Controller Actions: How to handle different return types like JSON, 

HTML, and redirect results. 

 

3. Views in MVC 

• Creating and Organizing Views: Using view models and best 

practices for organizing views. 

• _Layout.cshtml: Creating reusable layouts for consistent page 

structure. 

• Bootstrap Integration: Introduction to Bootstrap and using its grid 

system, forms, and navigation. 

• Razor View Engine: Using Razor for conditional content, loops, and 

strongly-typed views. 

• HTML Helpers and Tag Helpers: Leveraging helpers to generate 

forms, links, and other elements in a clean way. 

 



4. Working with Models 

• Models and Data Annotations: Detailed use of data annotations like 

[Required], [StringLength], and creating custom validators. 

• View Models and Data Models: Mapping between data models and 

view models to separate business logic from UI. 

• Model Binding: Automatic model binding from form data to 

controller actions. 

 

5. Forms and Input 

• Form Creation with HTML Helpers: Build forms with @Html.BeginForm() 

and generate form elements like text boxes and dropdowns. 

• Form Validation: Server-side validation with data annotations and 

client-side validation using jQuery Validation. 

 

6. Dependency Injection and Repository Pattern 

• Service Lifetimes: Discuss how to choose between Scoped, Transient, 

and Singleton in dependency injection. 

• Repository Pattern: Abstraction of database operations with 

repositories to separate business logic from data access. 

• Unit of Work Pattern: Manage transactions across multiple 

repository operations. 

 

7. Database and Entity Framework (EF Core) 

• EF Core Setup: How to install EF Core and configure a connection 

string for SQL Server. 

• Code First Migrations: Applying migrations to manage database 

schema updates. 



• Seeding the Database: Automatically populate the database with 

initial data. 

• Entity Relationships: Define one-to-many and many-to-many 

relationships using EF Core. 

• LINQ: Use LINQ for querying data in a readable way. 

• Tracking and Detaching Entities: Optimizing performance by 

detaching entities when needed. 

 

8. CRUD Operations 

• Full CRUD Cycle: Create, Read, Update, and Delete operations for 

managing records. 

• Pagination and Filtering: Enable pagination and filtering for large 

data sets. 

 

9. REST API Development 

• What is a REST API?: Introduce REST principles and why APIs are 

important in web development. 

• Creating a REST API: Use ASP.NET Core to create simple APIs using 

controllers and routing. 

• Returning JSON: Show how to return JSON responses from API 

endpoints. 

• Model Binding in APIs: Handle POST, PUT, and DELETE requests, 

including validation. 

• Swagger Integration: Demonstrate how to use Swagger for API 

documentation and testing. 

• API Versioning: Explain the need for versioning in APIs and how to 

implement it. 

 
 



 

10. Authentication and Authorization 

• ASP.NET Core Identity: User registration, login, and managing user 

profiles. 

• Role-Based Authorization: Restrict access to parts of the application 

based on user roles. 

• External Authentication: Implement third-party login with Google, 

Facebook, etc. 

• JWT Authentication (Optional): For building APIs with token-based 

authentication. 

 

11. Advanced Views and AJAX 

• Partial Views and View Components: Reusable components for 

modularizing your views. 

• AJAX in ASP.NET Core: How to make asynchronous requests using 

AJAX without refreshing the page, and handling responses 

dynamically. 

• JavaScript Integration: Use JavaScript and jQuery for front-end 

interactivity. 

 


